Immunogenicity, efficacy, and security of SARS-CoV-2 vaccine dose fractionation: a scientific evaluate and meta-analysis | BMC Drugs
[ad_1]
Haas EJ, McLaughlin JM, Khan F, Angulo FJ, Anis E, Lipsitch M, et al. Infections, hospitalisations, and deaths averted by way of a nationwide vaccination marketing campaign utilizing the Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine in Israel: a retrospective surveillance research. Lancet Infect Dis. 2022;22(3):357–66.
Google Scholar
Meslé MM, Brown J, Mook P, Hagan J, Pastore R, Bundle N, Spiteri G, et al. Estimated variety of deaths instantly averted in folks 60 years and older on account of COVID-19 vaccination within the WHO European Area, December 2020 to November 2021. Euro Surveill. 2021;26(47):2101021. https://doi.org/10.2807/1560-7917.ES.2021.26.47.2101021. Erratum in: Euro Surveill. 2022 Could;27(21): Erratum in: Euro Surveill. 2022 Jun;27(24).
Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, et al. A worldwide database of COVID-19 vaccinations. Nat Hum Behav. 2021;5(7):947–53.
Google Scholar
Cowling BJ, Lim WW, Cobey S. Fractionation of COVID-19 vaccine doses might lengthen restricted provides and scale back mortality. Nat Med. 2021;27(8):1321–3.
Google Scholar
World Well being Group: Fractional dose yellow fever vaccine as a dose-sparing possibility for outbreak response; 2016.
Carreno JM, Alshammary H, Tcheou J, Singh G, Raskin AJ, Kawabata H, et al. Exercise of convalescent and vaccine serum in opposition to SARS-CoV-2 Omicron. Nature. 2022;602(7898):682–8.
Google Scholar
Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 vaccine effectiveness in opposition to the Omicron (B.1.1.529) Variant. N Engl J Med. 2022;386(16):1532–46.
Google Scholar
Cheng SMS, Mok CKP, Leung YWY, Ng SS, Chan KCK, Ko FW, et al. Neutralizing antibodies in opposition to the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat Med. 2022;28(3):486–9.
Google Scholar
Wilder-Smith A, Desai S, Cravioto A, Nohynek H, Hombach J. Warning earlier than fractionating COVID-19 vaccines. Nat Med. 2021;27(11):1856–7.
Google Scholar
Interim assertion on dose-sparing methods for COVID-19 vaccines (fractionated vaccine doses). https://www.who.int/information/merchandise/10-08-2021-interim-statement-on-dose-sparing-strategies-for-covid-19-vaccines-(fractionated-vaccine-doses). Accessed 1 June 2022.
Interim Medical Issues for Use of COVID-19 Vaccines | CDC. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html#considerations-covid19-vax-booster. Accessed 1 June 2022.
Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody ranges are extremely predictive of immune safety from symptomatic SARS-CoV-2 an infection. Nat Med. 2021;27(7):1205–11.
Google Scholar
Cromer D, Steain M, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralising antibody titres as predictors of safety in opposition to SARS-CoV-2 variants and the influence of boosting: a meta-analysis. Lancet Microbe. 2022;3(1):e52–61.
Google Scholar
Abu-Raddad LJ, Chemaitelly H, Butt AA. Nationwide Examine Group for C-V: effectiveness of the BNT162b2 Covid-19 vaccine in opposition to the B.1.1.7 and B.1.351 variants. N Engl J Med. 2021;385(2):187–9.
Google Scholar
Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, et al. Security and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020;383(25):2427–38.
Google Scholar
Chappell KJ, Mordant FL, Li Z, Wijesundara DK, Ellenberg P, Lackenby JA, et al. Security and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, section 1 trial. Lancet Infect Dis. 2021;21(10):1383–94.
Google Scholar
Che Y, Liu X, Pu Y, Zhou M, Zhao Z, Jiang R, et al. Randomized, double-blinded, placebo-controlled section 2 trial of an inactivated extreme acute respiratory syndrome Coronavirus 2 vaccine in wholesome adults. Clin Infect Dis. 2021;73(11):e3949–55.
Google Scholar
Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, et al. mRNA-1273 COVID-19 vaccine effectiveness in opposition to the B.1.1.7 and B.1.351 variants and extreme COVID-19 illness in Qatar. Nat Med. 2021;27(9):1614–21.
Google Scholar
Chu L, McPhee R, Huang W, Bennett H, Pajon R, Nestorova B, et al. m RNASG: a preliminary report of a randomized managed section 2 trial of the security and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine. 2021;39(20):2791–9.
Google Scholar
Collie S, Champion J, Moultrie H, Bekker LG, Grey G. Effectiveness of BNT162b2 Vaccine in opposition to Omicron variant in South Africa. N Engl J Med. 2022;386(5):494–6.
Google Scholar
Ella R, Reddy S, Jogdand H, Sarangi V, Ganneru B, Prasad S, et al. Security and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim outcomes from a double-blind, randomised, multicentre, section 2 trial, and 3-month follow-up of a double-blind, randomised section 1 trial. Lancet Infect Dis. 2021;21(7):950–61.
Google Scholar
Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V, et al. Security and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, section 1 trial. Lancet Infect Dis. 2021;21(5):637–46.
Google Scholar
Formica N, Mallory R, Albert G, Robinson M, Plested JS, Cho I, et al. nCo VSG: Totally different dose regimens of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373) in youthful and older adults: a section 2 randomized placebo-controlled trial. Plos Med. 2021;18(10):e1003769.
Google Scholar
Goepfert PA, Fu B, Chabanon AL, Bonaparte MI, Davis MG, Essink BJ, et al. Security and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in wholesome adults: interim outcomes of a randomised, placebo-controlled, section 1-2, dose-ranging research. Lancet Infect Dis. 2021;21(9):1257–70.
Google Scholar
Guo W, Duan Ok, Zhang Y, Yuan Z, Zhang YB, Wang Z, et al. Security and immunogenicity of an inactivated SARS-CoV-2 vaccine in wholesome adults aged 18 years or older: A randomized, double-blind, placebo-controlled, section 1/2 trial. EClinicalMedicine. 2021;38:101010.
Google Scholar
Han B, Tune Y, Li C, Yang W, Ma Q, Jiang Z, et al. Security, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in wholesome youngsters and adolescents: a double-blind, randomised, managed, section 1/2 scientific trial. Lancet Infect Dis. 2021;21(12):1645–53.
Google Scholar
Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Security and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med. 2021;385(13):1172–83.
Google Scholar
Hsieh SM, Liu WD, Huang YS, Lin YJ, Hsieh EF, Lian WC, et al. Security and immunogenicity of a recombinant stabilized prefusion SARS-CoV-2 spike protein vaccine (MVC-COV1901) adjuvanted with CpG 1018 and aluminum hydroxide in wholesome adults: a section 1, dose-escalation research. EClinicalMedicine. 2021;38:100989.
Google Scholar
Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA vaccine in opposition to SARS-CoV-2 – preliminary report. N Engl J Med. 2020;383(20):1920–31.
Google Scholar
Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. Part 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle Vaccine. N Engl J Med. 2020;383(24):2320–32.
Google Scholar
Kremsner PG, Mann P, Kroidl A, Leroux-Roels I, Schindler C, Gabor JJ, et al. Security and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate in opposition to SARS-CoV-2 : a section 1 randomized scientific trial. Wien Klin Wochenschr. 2021;133(17-18):931–41.
Google Scholar
Li J, Hui A, Zhang X, Yang Y, Tang R, Ye H, et al. Security and immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in youthful and older Chinese language adults: a randomized, placebo-controlled, double-blind section 1 research. Nat Med. 2021;27(6):1062–70.
Google Scholar
Li XN, Huang Y, Wang W, Jing QL, Zhang CH, Qin PZ, et al. Effectiveness of inactivated SARS-CoV-2 vaccines in opposition to the Delta variant an infection in Guangzhou: a test-negative case-control real-world research. Emerg Microbes Infect. 2021;10(1):1751–9.
Google Scholar
Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 vaccines in opposition to the B.1.617.2 (Delta) Variant. N Engl J Med. 2021;385(7):585–94.
Google Scholar
Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine in opposition to the B.1.351 variant. N Engl J Med. 2021;384(20):1885–98.
Google Scholar
Meng FY, Gao F, Jia SY, Wu XH, Li JX, Guo XL, et al. Security and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in wholesome inhabitants aged 18 years or older: two single-center, randomised, double-blind, placebo-controlled, section 1 and section 2 trials. Sign Transduct Goal Ther. 2021;6(1):271.
Google Scholar
Momin T, Kansagra Ok, Patel H, Sharma S, Sharma B, Patel J, et al. Security and Immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): Outcomes of an open-label, non-randomized section I a part of section I/II scientific research by intradermal route in wholesome topics in India. EClinicalMedicine. 2021;38:101020.
Google Scholar
Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Part I/II research of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589–93.
Google Scholar
Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al. Effectiveness of COVID-19 vaccines in opposition to symptomatic SARS-CoV-2 an infection and extreme outcomes with variants of concern in Ontario. Nat Microbiol. 2022;7(3):379–85.
Google Scholar
Pan HX, Liu JK, Huang BY, Li GF, Chang XY, Liu YF, et al. Immunogenicity and security of a extreme acute respiratory syndrome coronavirus 2 inactivated vaccine in wholesome adults: randomized, double-blind, and placebo-controlled section 1 and section 2 scientific trials. Chin Med J (Engl). 2021;134(11):1289–98.
Google Scholar
Richmond P, Hatchuel L, Dong M, Ma B, Hu B, Smolenov I, et al. Security and immunogenicity of S-Trimer (SCB-2019), a protein subunit vaccine candidate for COVID-19 in wholesome adults: a section 1, randomised, double-blind, placebo-controlled trial. Lancet. 2021;397(10275):682–94.
Google Scholar
Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM, et al. Interim outcomes of a section 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med. 2021;384(19):1824–35.
Google Scholar
Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020;586(7830):594–9.
Google Scholar
Sheikh A, McMenamin J, Taylor B, Robertson C, Public Well being S. the EIIC: SARS-CoV-2 Delta VOC in Scotland: demographics, threat of hospital admission, and vaccine effectiveness. Lancet. 2021;397(10293):2461–2.
Google Scholar
Shu YJ, He JF, Pei RJ, He P, Huang ZH, Chen SM, et al. Immunogenicity and security of a recombinant fusion protein vaccine (V-01) in opposition to coronavirus illness 2019 in wholesome adults: a randomized, double-blind, placebo-controlled, section II trial. Chin Med J (Engl). 2021;134(16):1967–76.
Google Scholar
Sterne JAC, Savovic J, Web page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised instrument for assessing threat of bias in randomised trials. BMJ. 2019;366:l4898.
Google Scholar
Tang P, Hasan MR, Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness in opposition to the SARS-CoV-2 Delta variant in Qatar. Nat Med. 2021;27(12):2136–43.
Google Scholar
Tebas P, Yang S, Boyer JD, Reuschel EL, Patel A, Christensen-Fast A, et al. Security and immunogenicity of INO-4800 DNA vaccine in opposition to SARS-CoV-2: a preliminary report of an open-label, section 1 scientific trial. EClinicalMedicine. 2021;31:100689.
Google Scholar
Tseng HF, Ackerson BK, Luo Y, Sy LS, Talarico CA, Tian Y, et al. Effectiveness of mRNA-1273 in opposition to SARS-CoV-2 Omicron and Delta variants. Nat Med. 2022;28(5):1063–71.
Google Scholar
Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. Security and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–50.
Google Scholar
Walter EB, Talaat KR, Sabharwal C, Gurtman A, Lockhart S, Paulsen GC, et al. Analysis of the BNT162b2 Covid-19 vaccine in youngsters 5 to 11 years of Age. N Engl J Med. 2022;386(1):35–46.
Google Scholar
Ward BJ, Gobeil P, Seguin A, Atkins J, Boulay I, Charbonneau PY, et al. Part 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat Med. 2021;27(6):1071–8.
Google Scholar
Wu S, Huang J, Zhang Z, Wu J, Zhang J, Hu H, et al. Security, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised section 1 scientific trial. Lancet Infect Dis. 2021;21(12):1654–64.
Google Scholar
Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z, et al. Security, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in wholesome adults aged 60 years and older: a randomised, double-blind, placebo-controlled, section 1/2 scientific trial. Lancet Infect Dis. 2021;21(6):803–12.
Google Scholar
Xia S, Duan Ok, Zhang Y, Zhao D, Zhang H, Xie Z, et al. Impact of an inactivated vaccine in opposition to SARS-CoV-2 on security and immunogenicity outcomes: interim evaluation of two randomized scientific trials. JAMA. 2020;324(10):951–60.
Google Scholar
Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Security and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, section 1/2 trial. Lancet Infect Dis. 2021;21(1):39–51.
Google Scholar
Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Security and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in folks youthful than 18 years: a randomised, double-blind, managed, section 1/2 trial. Lancet Infect Dis. 2022;22(2):196–208.
Google Scholar
Yang S, Li Y, Dai L, Wang J, He P, Li C, et al. Security and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) in opposition to COVID-19 in adults: two randomised, double-blind, placebo-controlled, section 1 and a pair of trials. Lancet Infect Dis. 2021;21(8):1107–19.
Google Scholar
Zhang J, Hu Z, He J, Liao Y, Li Y, Pei R, et al. Security and immunogenicity of a recombinant interferon-armed RBD dimer vaccine (V-01) for COVID-19 in wholesome adults: a randomized, double-blind, placebo-controlled, Part I trial. Emerg Microbes Infect. 2021;10(1):1589–97.
Google Scholar
Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu Ok, et al. Security, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in wholesome adults aged 18-59 years: a randomised, double-blind, placebo-controlled, section 1/2 scientific trial. Lancet Infect Dis. 2021;21(2):181–92.
Google Scholar
Zhu F, Jin P, Zhu T, Wang W, Ye H, Pan H, et al. Security and immunogenicity of a recombinant adenovirus type-5-vectored Coronavirus Illness 2019 (COVID-19) vaccine with a homologous prime-boost routine in wholesome contributors aged >/=6 years: a randomized, double-blind, placebo-controlled, section 2b trial. Clin Infect Dis. 2022;75(1):e783–91.
Google Scholar
Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, et al. Immunogenicity and security of a recombinant adenovirus type-5-vectored COVID-19 vaccine in wholesome adults aged 18 years or older: a randomised, double-blind, placebo-controlled, section 2 trial. Lancet. 2020;396(10249):479–88.
Google Scholar
Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, et al. Security, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–54.
Google Scholar
Wan X, Wang W, Liu J, Tong T. Estimating the pattern imply and customary deviation from the pattern measurement, median, vary and/or interquartile vary. BMC Med Res Methodol. 2014;14:135.
Google Scholar
Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine in opposition to the B.1.351 Variant. N Engl J Med. 2021;384(20):1899–909.
Google Scholar
Padmanabhan P, Desikan R, Dixit NM. Modeling how antibody responses might decide the efficacy of COVID-19 vaccines. Nat Comput Sci. 2022;2(2):123–31.
Du Z, Wang L, Pandey A, Lim WW, Chinazzi M, Piontti APY, et al. Modeling comparative cost-effectiveness of SARS-CoV-2 vaccine dose fractionation in India. Nat Med. 2022;28(5):934–8.
Google Scholar
Nishiura H, Ito Ok, Anzai A, Kobayashi T, Piantham C, Rodríguez-Morales AJ. Relative Replica Variety of SARS-CoV-2 Omicron (B.1.1.529) In contrast with Delta Variant in South Africa. J Clin Med. 2021;11(1):30. https://doi.org/10.3390/jcm11010030.
Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861–80.
Google Scholar
Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and illness severity. Cell. 2020;183(4):996–1012 e1019.
Google Scholar
Ward H, Whitaker M, Flower B, Tang SN, Atchison C, Darzi A, et al. Inhabitants antibody responses following COVID-19 vaccination in 212,102 people. Nat Commun. 2022;13(1):907.
Google Scholar
Abu-Raddad LJ, Chemaitelly H, Bertollini R. Nationwide Examine Group for C-V: waning mRNA-1273 vaccine effectiveness in opposition to SARS-CoV-2 an infection in Qatar. N Engl J Med. 2022;386(11):1091–3.
Google Scholar
Peng Q, Zhou R, Wang Y, Zhao M, Liu N, Li S, et al. Waning immune responses in opposition to SARS-CoV-2 variants of concern amongst vaccinees in Hong Kong. EBioMedicine. 2022;77:103904.
Google Scholar
Yang B, Huang X, Gao H, Leung NH, Tsang TK, Cowling BJ. byyangyby/fractional_dose_review: Fractional dose evaluate: Zenodo; 2022. https://doi.org/10.5281/zenodo.7152048.
[ad_2]